Things to know by heart-Section 2. Physics with Health Science Applications.

	Equation	units
Kinetic Energy:	$K.E. \equiv \frac{1}{2}mv^2$	Joules, $\frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
Density:	$\rho \equiv \frac{\text{mass}}{\text{volume}}$	$\frac{\mathrm{kg}}{\mathrm{m}^3}$
Pressure:	$P \equiv \frac{F}{A}$	Pascals , $\frac{N}{m^2}$
Pressure at depth:	$P_{depth} = \rho_{fluid} \cdot g \cdot depth$	Pascals, $\frac{N}{m^2}$
Area of a circle	$A=\pi r^2$	m^2 , cm^2
	10,000 cm ² = 1 m ²	
Buoyant force	B.F. = $\rho_{\text{fluid}} g V_{object \text{ submerged}}$	Ν
Flow Rate:	Flow rate $\equiv \frac{\text{Volume}}{\text{time}}$	$\frac{\mathrm{m}^3}{\mathrm{sec}}, \frac{\mathrm{cm}^3}{\mathrm{sec}}$
	$FR = \frac{\Delta P \pi r^4}{8 \eta L}$	
Coulomb's law:	$F = \frac{kq_1q_2}{d^2}$	Newtons
Coulomb's constant:	$k = 9 \times 10^9$	$\frac{\mathrm{Nm}^2}{\mathrm{C}^2}$
Charge of an electron:	$q_e = -1.6 \times 10 - 19$	Coulombs
Current:	$I \equiv \frac{q}{t}$ are	nps, $\frac{\text{coulombs}}{\text{second}}$
Voltage:	$V \equiv \frac{E}{q}$	Volts, $\frac{\text{joules}}{\text{coulomb}}$
Power	$Power \equiv \frac{E}{t}$ $Power = IV$	$\frac{joules}{sec}$, watts

Things to know by heart-Section 2. Continued

Ohm's law	$I - \frac{V}{V}$		coulombs
	$r = \frac{1}{R}$	amps,	second
Adding resistors			
in <u>series</u> :	$\mathbf{R} = \mathbf{R}_1 + \mathbf{R}_2 + \dots \mathbf{R}_n$	ohms	

Adding resistors

in <u>parallel</u>: Also known as finding the series equivalent of the parallel resistors

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$
 ohms

Magnetic field strength:	$eta \equiv rac{ \mathbf{F} }{\mathbf{q}\mathbf{V}_{\perp}}$	Tesla, $\frac{N}{C \cdot \frac{m}{2}}$
		S